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ABSTRACT  

Due to their reliance on transmitters of opportunity, passive radars  require special signal processing 

algorithms. Adaptive filtering is used to filter out strong stationary echos, while computation of 

crossambiguity of reference and echo signals is necessary to perform target detection. At present stage, 

signal processing for FM radars can be implemented on a standard PC without much effort. However, the 

task becomes more challenging for wideband signals, such as DVB-T.  

The paper surveys several algorithms for adaptive filtering and computation of crossambiguity function. 

Adaptive filtering covers: block algorithms (least squares estimator and derivatives), least mean square 

(LMS) algorithms (standard LMS, Block LMS, Fast LMS, Delay-LMS), lattice estimators (LS lattice filter, 

gradient adaptive lattice). The concept of frequency response of adaptive filtering algorithms is introduced 

and an appropriate analysis is performed. 

The second part of the paper focuses on fast computation of crossambiguity via the fast Fourier transform 

(FFT) algorithm. Again, the issue of frequency response of the resulting implementation is  discussed. 

1.0 INTRODUCTION 

Passive Coherent Location (PCL), often referred to as passive radar, is a prospective technique of detecting 

and tracking objects. Unlike classical radars, passive radars do not employ dedicated transmitters and fully 

rely on third party ones, so-called illuminators of opportunity. Typical sources of illumination include, but 

are not limited to: radio and television broadcasting stations – both analog [1] and digital [2] (digital audio 

broadcasting DAB, digital video broadcasting DVB), GSM signals[3], Wi-Fi/WiMAX networks [4]. Among 

important advantages of PCL, as compared to the classical approach, one could point to the following ones 

• Better utilization of available spectrum. Passive radar sensors do not occupy RF spectrum, which 

makes them well suited for application in congested environment. 

• Increased difficulty to detect and localize the radar. Passive radar remains silent during its operation, 

which greatly improves its chance of survival. 

• Improved jamming resistance of PCL. Random characteristics of typical sources of illumination 

combined with coherent signal processing techniques improve jamming robustness of passive 

radars. Interestingly, passive radar can (at least theoretically) take advantage of jammer’s presence – 

by using the jammer as a source of illumination. 
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• Possibility to detect low-observable targets. `Stealth’ is achieved by a combination of careful 

shaping and application of radar absorbing materials. Even though material science advanced 

considerably over the last years, it is believed that shape remains the primary factor in achieving low 

radar cross section. Loosely speaking, the aim of shaping is to reflect the incoming waves away of 

its source in a controlled fashion. This technique works very well against classical radars with co-

located transmitter and receiver, but has less chances of success against bistatic and multistatic 

radars, such as PCL. 

Unfortunately, passive radars require a considerably more sophisticated signal processing than their classical 

counterparts.  Typical passive radar signal processing subsystem includes the following elements (Figure 1): 

 
 

 

• Preprocessing. The goal of this stage is to signal quality prior to the later stages of processing. 

Preprocessing usually includes some form of preliminary filtering, IQ downconversion, decimation 

and digital beamforming.  

• Adaptive filtering. One of the greatest challenges in PCL is dynamic range. Useful echoes are 

usually very weak and masked by strong direct signal and clutter. The difference in dynamics of 

targets and unwanted components of the signal is usually very large, possibly exceeding 60 dB. This 

makes target detection very difficult. Adaptive filtering allows one to improve dynamic range of the 

radar by removing (subtracting) the unwanted strong signal.  Such an operation is possible thanks to 

the fact that unwanted signal components are stationary or slowly time-varying, while targets 

usually introduce a considerable Doppler shift to the echo. This makes it possible for the adaptive 

filter to “distinguish” between wanted and unwanted components of the signal [5]. 

• Computation of crossambiguity. Crossambiguity is a PCL equivalent of matched filtering and 

Doppler processing. The operation is defined as 
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• where t  denotes discrete time,   and   are the delay and the Doppler shift, respectively, )(' ty is 

the echo signal (after adaptive filtering), )(tx is the reference signal, 
*z  denotes the complex 

conjugate of z  and T  is the integration time. The values of ),(   are computed on a grid of 

some meaningful values of delay and Doppler.  

• Detection and estimation. Once (1) is computed, target detection (possibly employing CFAR) can be 

performed. Afterwards, the bistatic range, velocity and (optionally) azimuth/elevation of the 

detected targets are estimated.  

• Tracking and localization. Quality of the preliminary estimates of bistatic range and velocity may be 

improved using tracking [6], [7]. The position of the target in Cartesian coordinates can be estimated 

by cross-referencing information yielded by several base stations and/or several passive radars [8]. 
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Figure 1: Block diagram of signal processing in a typical passive radar. 
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This paper focuses  on the second and the third step of processing chain. Its primary aim is to survey a range 

of techniques which can be applied to perform adaptive filtering and computation of crossambiguity. We 

also evaluate their potential for application in passive radar. The reasons behind such a choice are outlined 

below 

• Detection, estimation, tracking and localization operate on a substantially smaller datastreams than 

adaptive filtering and computation of crossambiguity, i.e. their efficiency is less critical. 

• For narrowband signals, such as the FM broadcast (approx. 200 kHz),  both the adaptive filtering 

and the computation of crossambiguity can be performed in real time using a modern standard PC. 

Unfortunately, requirements of both operations may grow faster than linear with sampling 

frequency. Linear growth of required processing speed is caused by smaller sampling period, i.e. 

less time to complete all computations. However, because of increased sampling rate it occurs that 

the orders of adaptive filters and the size of the grid ),(   must be increased as well! This means 

that, while one can process FM signal with relative ease, PCL for broadband signals, such as DAB 

or DVB, is considerably more difficult. 

The paper is organized as follows. Section 2 revises the concepts of computational complexity in the context 

of modern hardware computing platforms. Section 3 presents various adaptive filtering algorithms and 

discusses their strong points and weaknesses. Additionally, tracking behaviour of several adaptive filters is 

analyzed. Such an analysis allows one to determine the “bandwidth” of adaptation laws and to predict the 

width of the Doppler notch caused by adaptive filtering. Section 4 is devoted to computation of 

crossambiguity function. Section 5 concludes. 

2.0 COMPUTATIONAL COMPLEXITY REVISED 

It is common to express computational complexity using number of multiplications. Unfortunately, in the 

context of modern hardware, such an approach has serious flaws. With multiple cores and execution units 

running in parallel, multi-level cache memories, and pipelining one should also take into account the 

following factors 

• Parallelism. It is desirable that every step of the algorithm consists of many simple, similar 

operations which can be executed independently of each other. Such a feature enables efficient 

implementation using SIMD units, GPUs or, in the case of FPGAs, embedded multipliers. 

• Memory requirements. In many cases, execution speed may be limited by memory access latency. 

Ideally, an algorithm should require only a small amount of memory to execute. This enables one to 

keep all the data in the registers and L1 cache, which allow for the fastest access.  

• Pipelining capability. Modern computing platforms owe their high potential speed to pipelining. 

Loosely speaking, pipelining means that one can start an operation (e.g. multiplication) once every 

clock cycle, but the results of operation are not available until several clock cycles later (latency). To 

illustrate potential caveats involving pipelining, consider a simple equation 

caby   

 and assume that computational latency of both multiplication and adding is 5 cycles. This means 

that computing y  will take as many as 10 cycles (and not 2 or 6 cycles), because it is necessary to 

compute result of multiplication prior to starting addition.  
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• Absence of feedback loops. Many adaptive algorithms involve feedback loops, e.g. to adjust 

adaptive weights. When feedback is present it is necessary to finish all computations from the 

previous phase before proceeding with the next. Feedback loops are undesirable because they 

usually make it hard or impossible to use pipeline efficiently. If feedback loops are present, it is 

desirable that adaptive coefficients are updated on a block (rather than sample) basis, i.e. once per 

block of data. 

• Numerical stability. Some algorithms are known to possess poor numerical properties. In such a 

case it may be necessary to use floating-point arithmetic (which usually rules out FPGAs as a 

computing platform) and implement some additional safeguards. 

In the sequel we will screen several well known adaptive filtering algorithms for these features. 

3.0 ADAPTIVE FILTERING 

3.1 Least squares methods 

Denote by )(tx  the reference signal and let 
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denote the echo signal, consisting of delayed, scaled, and phase-shifted replicas of the reference, corrupted 

by a wideband noise )(tn . Eq. (2) can be written in the form 

 )()()( tntty T  θ , (3) 

where  )1()1()()(  KtxtxtxtT   and  TKwww 110  θ . The least squares 

adaptive filter is defined as 

 θ̂)()()(' ttyty T , 

where θ̂  is the vector of adaptive weights, chosen so as to minimize the following cost criterion 
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Least squares is a purely block algorithm. This means that it can be parallelised and pipelined quite 

effectively. What can be criticized in the algorithm is that a large amount of operations is necessary to 

compute  ΦΦ
H

 and then to solve the system 

   yΦθΦΦ
HH ˆ . (4) 
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However, inspection of  ΦΦ
H

 reveals that (for large T) it is nearly Toeplitz – the formulas describing 

elements of  ΦΦ
H

 lying on the same diagonal are nearly identical. This can possibly be taken advantage of 

when computing  ΦΦ
H

.  

Furthermore, one could try to reduce computational complexity even further by replacing  ΦΦ
H

 in (4) 

with a Toeplitz matrix R  made up of, e.g. entries from the first row of  ΦΦ
H

. Not only that computing 

R is simpler than computing  ΦΦ
H

, this technique also enables one to use fast solvers for Toeplitz 

systems [9]. Note however, that if R  is ill-conditioned, this may lead to large errors of the modified 

solution. 

3.2 Least mean squares methods 

A very popular implementation of adaptive filter is based on the least mean squares (LMS) approach 

  )1(ˆ)()()()1(ˆ)(ˆ  tttyttt H
θθθ  , (5) 

where 

  TKtxtxtxt )1()1()()(   , 

and 0  is a small gain. The output of the filter is 

 )(ˆ)()()(' tttyty H
θ  

or (a `free’ variant) 

 )1(ˆ)()()('  tttyty H
θ . 

It is well known that convergence speed of LMS depends heavily on the eigenvalues of covariance matrix of 

the signal )(tx  [13]. However, when )(' ty  is of interest, slow convergence in weakly excited directions is 

less of an issue because these directions are actually not very pronounced in ).(ty  

LMS is quite cheap in terms of number of operations and memory footprint. However, it involves feedback 

loop in the update equation (5) which can considerably complicate its implementation, especially on 

platforms such as FPGA. To mitigate this issue the so-called delayed LMS may be used 

 )](ˆ)()()[()1(ˆ)(ˆ   tttyttt H
θθθ . (6) 

Such a form gives one considerably more time to compute the correction term. Furthermore, for small values 

of   properties of delayed LMS are similar to (5).  Poltmann [10] describes a procedure which allows one 

to convert the delayed LMS into the standard LMS at a price of slightly increasing computational cost. 
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Another important variant of LMS is the block version 

 )](ˆ)()()[()(ˆ)(ˆ BBtBtBtBtBBtBt H  θΦyΦθθ  , (7) 

where B  is the block size (usually B  is equal to the size of θ̂  and a power of two), 

 TBBtyBtyBtyBt )1()1()()(  y  and 

 )1()1()()(  BBtBtBtBt  Φ . 

The block version is particularly attractive, because the multiplications )(ˆ)( BBtBtH θΦ  and 

)()( BtBt eΦ ,where )(ˆ)()()( BBtBtBtBt H  θΦye , are simply convolutions. This means that the 

most time-consuming parts of (7) may be implemented very efficiently using FFT. When the overlap-save 

method is used to implement convolutions, (7) requires 5 FFTs of size B2  per block of data. For large filter 

sizes the FFT-based implementation can be more than ten times faster than (5)-(7). A delayed variant of 

block LMS, suitable for pipelined implementation is described in [11].  

3.3 Lattice adaptive filters 

Block diagram of a lattice filter is shown in Figure 2. The filter consists of two distinct parts. The top part of 

the filter decomposes the signal )(tx  into forward and backward prediction errors, using so-called reflection 

coefficients Kkk ,...,2,1,   
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 (8) 

The lattice is initialized as 

 )()()( 00 txtbtf  . 

The bottom part of the filter performs the cleaning – weighted backward prediction errors are subtracted 

from the input signal so as to minimize the power of the output signal. 

 )()()()(1 tbtwtete kkkk  , (9) 

where )()(0 tyte  . 

Lattice filters are often praised for their ability to grow and shrink as needed. The size of the lattice may be 

freely adjusted on-line, i.e. when the filter is running. However, note that in case of an embedded 

implementation, the order of the filter is likely to be constant or bounded. This means that this particular 

feature may be of  little importance. 
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The optimal (in the mean-sqared sense) reflection coefficients and weight are defined using ensemble means 
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 (10) 

In practice the ensemble means are unknown and the coefficients of the filter must be adapted in a different 

way. One of the most straightforward solutions is based on replacing ensemble means with statistical ones 

[5] 
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Such an approach has several strong points. Computation of forward and backward prediction error signals, 

as well as the next reflection coefficient k , and the weight kb  may be performed in parallel. Furthermore, 

any of these operations may be distributed among several cores. 

Unfortunately, the statistical mean approach is not free of drawbacks. Firstly, it requires a rather large 

amount of memory to keep the whole signal recording. Secondly, the stages of the filter must be executed in 

sequence. Note that, prior to executing equations for the k -th stage, one must first compute the 

corresponding reflection coefficient, which is done in the )1( k -th stage. This limits the amount of 

parallelism in the algorithm. Furthermore, it is necessary to keep the computed signals )(),( tbtf kk in 

memory for cleaning. Since the processed signal are usually long, this may lead to poor usage of cache 

memory. 
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Other adaptation algorithms include, e.g. the least squares lattice (LSL) algorithm or the gradient adaptive 

lattice (GAL) algorithm [13]. The former is a rather heavyweight algorithm, which includes many divisions, 

sequential processing and feedback loop. It is also well known that certain implementations of LSL suffer 

from numerical instability. This makes LSL rather poorly suited for radar signal processing. 

GAL is considerably lighter than LSL. The algorithm reads 
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  (12) 

The above recursion implements only the lattice part. To complete the joint process estimation, it should be 

extended with a LMS-like part for adapting the weights kw . 

Note that GAL includes feedback loop, divisions, and a considerable number of sequential operations. All 

these features make the algorithm difficult to implement efficiently. 
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Figure 2: Lattice filter. 
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3.2 Tracking behaviour of adaptive filters 

We will discuss tracking behaviour of adaptive filters using LMS as an example. Let  

 )()()()( tnttty H  θ , (13) 

where )(tθ  is the true, slowly time-varying, vector of parameters. For small values of adaptation gain  , 

the estimated weight vector )(ˆ tθ  `wanders’ around its statistical expectation, )](ˆ[E tθ .   

Recall (5) and apply expectation to both sides. Neglecting correlation between )(tH  and )1(ˆ tθ  one 

obtains 

 )()]1(ˆ[E)]1(ˆ[E)](ˆ[E tttt θRθRθθ    . (14) 

where )]()([E tt H R . Denote by i  the i-th eigenvalue of R  and by iv  the corresponding 

eigenvector. Let )()( tt H

ii θvθ   and )](ˆ[E)(ˆ tt H

ii θvθ  . Then  

 )()1(ˆ)1()(ˆ ttt iiii θθθ   , (15) 

i.e. the behaviour of LMS can be explained as first order filtering of )(tiθ . It follows that one can introduce 

a concept of frequency response of LMS, which takes the form 
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Eq. (16) may be used to assess tracking error and phase lag of the LMS adaptive filter.  
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However, in case of radar signal processing, the tracking error frequency response of )(ˆ)( tt ii θθ   is of 

more interest. It takes the form 
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and is shown in Figure 3 for 05.0i . As expected, the LMS provides a notch around zero Doppler. 

However, note that the range of frequencies with very high attenuation is very narrow. Increasing   could 

widen the notch, but this could adversely affects higher frequencies, where targets are present. 

 

Figure 3: Tracking error frequency response of LMS. 

Eq. (11) suggest another way to widen the notch of LMS. This can be achieved by postfiltering )(ˆ tiθ   

 )(ˆ)()( teFt i

j

ii θθ
 , (18) 

where )( j
i eF 

 is chosen so as to improve the resulting error frequency response. The filtering technique 

may also be extended to cancelation of moving targets, see [12].  

The concept of frequency response may be generalized to block algorithms, such as the LS approach. The 

estimator (4) yields a value which is close to the averaged true parameter vector 
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This means that its frequency response reads 
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The resulting error frequency response is shown in Figure 4 (It was assumed that 20T ).  The ripples 

present in the response are actually less important than it might seem, because crossambiguity of the 

cleaned signal is typically computed at the points where 1)(  j
i eH . 

 

Figure 4: Typical tracking error frequency response of a block algorithm. 

4.0 CROSSAMBIGUITY 

4.1 Time domain implementation 

The most straightforward design is direct implementation of the crossambiguity formula 
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which requires T2  complex multiplications for each point on the grid ),(  .  

Several easy improvements can be made to this approach. First, note that for fixed   and Tk /2    , 

),(   may be interpreted as the DFT of the sequence )()(' * txty . Furthermore, since useful 

information resides only in the low frequency part of the spectrum of )()(' * txty , a lowpass filter and a 

decimator may be applied prior to spectral analysis. Typically, this will reduce a stream of data applied on 

the FFT processors by 2 or more orders of magnitude, thus making the cost of the FFTs negligible. 
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Out of possible solutions, the CIC decimator is particularly interesting. When CIC decimator is used, the 

crossambiguity formula is implemented as 

 ,)()('),(
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0

1
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* bLj
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t

etbLxtbLy  








  







  (22) 

where L  denotes CIC order. Note that the process of computing ),(   was decomposed into correlation 

(inner sum) and DFT (the outer sum). An important feature of the above formula is that the correlation part 

may now be implemented via FFT. This will be explained in more details in the next subsection. 

 

  

Figure 5: Time domain implementation of the crossambiguity computer employing sampling 
rate reduction. 
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4.2 Fast algorithm via FFT 

Consider the product 
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Note that  
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i.e. )(z  is a convolution of )(' ty  and )(* tx  . This means that very efficient FFT based algorithms for 

computing convolution may be applied to compute )(z  for several consecutive values of  . Since it holds 

that 

 )]([)]([ ** txFFTtxFFT  , 

the following algorithm, based on the overlap-save method, may be obtained. 

1. Divide the signals into B=T/L blocks of length L.  
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For efficiency, L should be chosen to be a power of two. 

2. For each block, form the superblocks of size 2L 
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3. Compute FFTs of both superblocks. 
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4. Multiply FFTs pointwise, taking into account that )(bFX  must be conjugated. 

 )()()( * bbb FFF XYZ  . 
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5. Compute inverse FFT of )(bFZ  and discard its meaningless half )(bζ . 

  TTT bbb )()()( ζzZ  , 

where 
TLzzzb )]1()1()0([)(  z . 

The block diagram of the algorithm is shown in Figure 6. Observe that it is a fully pipelined design. Since 

FFT cores are readily available from FPGA manufacturers, implementation of the algorithms is rather 

straightforward. For instance, the core provided by Xilinx [14] allows one to compute FFTs of the signal 

sampled at an arbitrary clock rate in real-time. The major limitation of the algorithm is the FFT length, which 

must be equal twice the block length. This limits signal sampling rate to half of the FPGA clock rate, unless 

certain extension to the implementation, such as doubling the number of FFTs/IFFTs are made. 

Remark: The correlator block should be followed by a Doppler processor to complete the process of 

computing crossambiguity. 
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Figure 6: Fast implementation of correlation based on FFT. 
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4.3 Frequency response of the fast algorithm 

Let )()(' 0 txety
tj

 . Then  
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which means that a loss can be expected for high values of Doppler. Figure 7 shows dependence of loss on 

target velocity for a radar operating at a 10 GHz carrier with 10 MHz sampling frequency and block size 

L=1024. Under the assumption that losses should not exceed 1 dB, the design is suitable for targets with 

speeds not exceeding 38 m/s. Such a value may not be satisfactory for certain applications, and one could be 

forced to use shorter blocks. 

 

Figure 7: Dependence of loss on target velocity for X-band radar and L=1024. 

 

In such a case, the implementation shown in Figure 8 may be useful. This variant trades block length for 

additional multipliers, memory and IFFT engines, but avoids adding extra FFTs to the design. 
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5.0 CONCLUSIONS 

Several options for adaptive filtering and computation of crossambiguity function were evaluated in terms of 

their suitability for passive radars with high sampling rate. We compared their computational complexity, 

memory usage and suitability for pipelined implementation.  
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